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Multijunction solar cells have evolved from their original development for space missions to displace silicon cells in high concentrating photovoltaic

(CPV) systems. Today’s three-junction lattice-matched production cells have efficiency of 39–39.5% under high concentration, and there appears

to be little opportunity for further efficiency gain with this three-junction technology. Future generations of CPV cells will exploit more than three

junctions, with metamorphic subcells, or both technical approaches to achieve efficiencies >45%. As new designs seek closer current matching

and further spectral splitting, atmospheric variability will necessitate careful modeling to optimize energy output. These new cells will also be

higher cost, which will favor higher CPV system concentration. # 2012 The Japan Society of Applied Physics

1. Historical Perspective

Optical concentration has been explored since the earliest
days of the photovoltaic (PV) industry, as a means to both
boost cell efficiency and leverage the high cost of solar cells.
Early concentrating photovoltaic (CPV) systems used the
technology of the day, i.e., almost exclusively silicon,
although the potential of multijunction cells, including the
structure that was ultimately successfully commercialized in
today’s technology, was recognized by the late 1970’s.1)

Strong interest in GaAs from the space community for its
radiation hardness motivated the development of GaAs
devices, on lightweight Ge substrates. Bedair et al. demon-
strated the first multijunction solar cell with epitaxially-
grown subcells monolithically interconnected with an
epitaxially grown tunnel junction, the basic approach used
today, with an AlGaAs/GaAs two-junction cell in 1979.2)

Several years later, Olsen et al.3) demonstrated the dual
junction GaInP/GaAs cell, and this technology was
deployed on space missions in the mid-1990’s. An active
Ge bottom subcell was developed, using the Ge growth
substrate, resulting in three-junction (3J) GaInP/GaInAs/Ge
cells which were first launched on spacecraft in 2000.

These successes sparked immediate interest in the
terrestrial CPV community. Numerous experiments were
tried using the new multijunction cells,4,5) and to develop-
ment of cells optimized for terrestrial use, leading to a series
of record terrestrial concentrator cell efficiencies,6–9) includ-
ing the first solar cell of any type to reach over 40%
efficiency8) in 2006. These achievements led to incorpora-
tion of multijunction cells in place of silicon cells in the
leading CPV systems,10,11) and to the development of
numerous new systems. Commercialization of the cell
technology has steadily progressed. Figure 1 shows the
progression of production efficiency distributions for
commercial CPV products made by Spectrolab to date, with
steadily increasing performance.12,13)

Until the introduction of the ‘‘C4MJ’’ technology in 2011,
all production cells had been lattice-matched. The C4MJ
technology, by contrast, has an upright metamorphic
structure (see Fig. 2).

2. Multijunction Technology Roadmap

The record cell efficiency for ‘‘conventional’’ lattice-
matched 3J cells is 41.6%.7) This record has been matched
by 3J upright metamorphic cells,14) and has been surpassed
by two different approaches:

. A 42.3% efficiency 3J cell with metamorphic bottom
cell achieved with bifacial growth;15) and

. A 3J lattice-matched cell with an undisclosed lattice-
matched technology has achieved 43.5% efficiency.16)
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Fig. 1. Spectrolab production efficiency history.
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Fig. 2. Lattice matched and metamorphic epitaxial structure.
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In addition, recent record AM0 efficiency results for a 4J
inverted metamorphic (IMM) have surpassed the best
efficiencies of any 3J cells,17) demonstrating for the first
time a device with more than three junctions surpassing the
best 3J devices. Taken together, these record devices
demonstrate that promising avenues for improvement exist
with both lattice-matched and metamorphic structures.

Spectrolab has a broad research program pursuing a
variety of development paths toward improved efficiency
(see Fig. 3). This program includes the above structures, as
well as semiconductor bonding.

A common strategy for all the proposed improved device
structures is to more closely match the currents between
subcells. In both of the record cells cited above, the bottom
Ge cell has been replaced by a wider bandgap material
which is current matched (or nearly so) to the top two cells
and provides a higher voltage than Ge. Cells with more
junctions seek to further split the solar spectrum and
inherently rely on current matching over a broader range
of sub-bands.

3. Implications of Advanced Designs

The trend toward more junctions, and more closely matched
currents between multiple subcells, has potential perfor-
mance implications as discussed below. In addition, all of
the technology options on the roadmap can be expected to
increase production cost.

3.1 Performance

The current balance for a given cell varies with both
atmospheric variations and the temperature of the cell.13,18)

Indeed, the effect of cell temperature has been shown to
degrade performance in bifacial growth cells with a closely
matched bottom cell current.15) On the other hand, King
et al. have shown by analysis that, at least considering air
mass variation only, a 6J cell outperforms 3J, 4J, and 5J cells
throughout the day except within 30min of sunrise or sunset,
when the available energy is low.5,19) This finding is useful
in that it shows the added junctions deliver higher energy
over a broad range of spectral content from changing air
mass throughout the day.

Figures 4 and 5 provide a simplified look at the variation
in current balance due to major atmospheric variables. The
SMARTS model20) was used to model the solar spectrum at
Daggett, California at 3 pm on the autumnal equinox (as a
representative CPV location and spectral condition) based on
TMY3 site data.21) The TMY3 data were examined to find
the minimum and maximum broadband AOD and precipi-
table water, and SMARTS spectra were generated with
the minimum and maximum values to represent extreme
bounds of atmospheric conditions at a typical CPV site. The
broadband aerosol optical density (AOD) was converted to a
spectral AOD value as described by Myers.22)

Figure 4 illustrates that AOD has a broadband effect that
is most pronounced in the shorter wavelength region,
whereas precipitable water (W) affects the longer wave-
length portions of the spectrum with very little effect on the
short wavelengths. Thus both influence the current balance
but in different ways.

Figure 5 shows that this is indeed the case. The rela-
tive currents are shown for C3MJ+ (1.88 eV/1.4 eV/
0.67 eV) and a 5J lattice-matched cell with GaInNAs
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Fig. 3. Multijunction cell technology roadmap.
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for the fourth subcell (2.1 eV/1.71 eV/1.4 eV/1.12 eV/
0.67 eV). The C3MJ+ cell is top-cell-limited in all
conditions except low AOD, high W. The 5J cell, with the
top two cells closely current-matched under the standard
(ASTM-173G) direct spectrum, fares rather well with these
atmospheric extremes, with subcell 1, 2, or 4 limiting
performance depending on the condition.

It should be noted that this analysis neglects the band edge
shifts due to temperature. The fact that cell temperature is
somewhat correlated with atmospheric conditions (e.g., high
air mass occurs near twilight when cell temperature is lower)
highlights the need for full annual modeling of cell and
system performance, taking into account system optics
transmittance, cell temperature, and spectral variability in
order to arrive at optimal bandgap tailoring.

3.2 Cost

In the space industry, satellites and associated launch costs
run to hundreds of millions of dollars, and for commercial
satellites, the revenue potential is directly proportional to the
power generated by the solar panels. High efficiency is
therefore extremely leveraging in space applications. In CPV
systems the cell efficiency similarly leverages the balance of
systems cost. If the complete plant costs are known, one can
easily calculate the impact on the overall project economics
for different cell price and efficiency combinations.

Figure 6 illustrates this calculation using hypothetical
cost and efficiency numbers for concentrating silicon, and
‘‘low-cost’’ and ‘‘high-cost’’ multijunction cells. Cell effi-
ciencies are as noted, and are assumed to be a function of

concentration based on empirical fit to 3J cell data. The
balance of system cost is assumed to increase superlinearly
with increasing concentration (secondary axis).

Assuming the balance of system cost is independent of
concentration, the higher efficiency MJ cells will always
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Fig. 5. (Color) Current balance under varying simulated atmospheric

conditions for C3MJ+ and a five-junction lattice-matched cell with a dilute

nitride fourth junction.
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result in a lower system cost ($/W) at sufficiently high
concentration. By the same token, however, the roadmap to
higher efficiency will most likely drive CPV systems to ever-
increasing concentration.

4. Conclusions

Multiple avenues exist for further growth of multijunction
solar cell efficiency. These avenues all necessitate much
more careful and comprehensive modeling than has been the
practice to date to ensure optimized performance in the field.
To the extent the higher efficiency cells increase manufac-
turing cost, the trend to higher concentration systems will
continue.
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